There are ten possible combinations of three of the the five variables v0, vf, a, Dt and Ds. These ten combinations are summarized in the table below:
1 v0
vf
a
2
v0
vf
dt
3
v0
vf
ds
4
v0
a
dt
5
v0
a
ds
*
6
v0
dt
ds
7
vf
a
dt
8
vf
a
ds
*
9
vf
dt
ds
10
a
dt
ds
If we know the three variables we can easily solve for the other two, using either direct reasoning or the equations of uniformly accelerated motion (the definitions of average velocity and acceleration, and the two equations derived from these by eliminating Dt and then eliminating vf).
Only two of these situations require equations for their solution; the rest can be solved by direct reasoning using the seven quantities v0, vf, a, Dt, Ds, Dv and vAve. These two situations, numbers 5 and 8 on the table, are indicated by the asterisks in the last column.
We learn more physics by reasoning directly than by using equations. In direct reasoning we think about the meaning of each calculation and visualize each calculation.
When reasoning directly using v0, vf, `dv, vAve, `ds, `dt and a we use two known variables at a time to determine the value of an unknown variable, which then becomes known. Each step should be accompanied by visualization of the meaning of the calculation and by thinking of the meaning of the calculation. A 'flow diagram' is helpful here.
When using equations, we need to find the equation that contains the three known variables.
Do the following: