Time and Date Stamps (logged): 17:12:20 06-10-2020 °¶Ÿ°±Ÿ±¯¯µŸ°¯Ÿ±¯±¯ Calculus II

Calculus II Test 1


Test should be printed using Internet Explorer.  If printed from different browser check to be sure test items have not been cut off.  If items are cut off then print in Landscape Mode (choose File, Print, click on Properties and check the box next to Landscape, etc.). 

Name and Signature of Student _____________________________

Signed by Attendant, with Current Date and Time: ______________________

If picture ID has been matched with student and name as given above, Attendant please sign here:  _________

Instructions:

Directions for Student:

Test Problems:

.    .    .    .    .     .    .    .    .     .    .    .    .     .    .    .   

.

.

.

.

.

.

.

.

.

.

Problem Number 1

Find the general antiderivative of  x^ 8 e^(x^ 9 + 9).

.

.

.

.

.

.

.

.

.

.

Problem Number 2

Find the indefinite integral of the function t^ 1 / e^( 7 t).

.

.

.

.

.

.

.

.

.

.

Problem Number 3

Find the general solution of dy / dx = 9 e^x - 8.

.

.

.

.

.

.

.

.

.

.

Problem Number 4

Integrate y^ 8 / `sqrt( y + 9) with respect to y, from y = 1.36 to y = 2.21.

.

.

.

.

.

.

.

.

.

.

Problem Number 5

If F ' (t) = 5 sin(t) e^( 7 t), then if F(0) = 1.5, find F(t) for t = .9 and for t = 1.9.

.

.

.

.

.

.

.

.

.

.

Problem Number 6

Find the average value of y = 9 sin(x) on the interval [ .4, 1.4 ].

.

.

.

.

.

.

.

.

.

.

Problem Number 7

Sketch a graph of a continuous function f(x) which is linear from (0, 4) to ( 5, -4.001), then linear to ( 8, 6) and then again linear to ( 13,-2.002). Sketch a graph of its antiderivative F(x) for which F(0)= 11 and label the known points on this graph.

.

.

.

.

.

.

.

.

.

.

Problem Number 8

Find an antiderivative of the function f(z) = z^ 8 + 1 / (cos^2( 6 z) ).