Given points P and Q in the plane, we find the vector PQ, its magnitude, a unit vector in the direction of PQ and a vector of magnitude 10 in the direction of PQ.

multivar_09_01

multivar_09_02

multivar_09_03

multivar_09_01_smaller_file

multivar_09_02_smaller_file

multivar_09_03_smaller_file

 

We use a rectangular prism to see why the Pythagorean Theorem extends as it does from 2 dimensions to three.

multivar_09_04

multivar_09_05

multivar_09_04_smaller_file

multivar_09_05_smaller_file

We apply the Pythagorean Theorem to the points (2, 5, -4) and (x, y, z), and end up with the equation of a sphere centered at (2, 5, -4).

multivar_09_06

multivar_09_06_smaller_file

We apply the Pythagorean Theorem to obtain the equation of a sphere centered at (x0, y0, z0) having radius r.

multivar_09_07

multivar_09_07_smaller_file

We apply the preceding to obtain the equation of a sphere through (2, 5, -4) with radius 6, and expand the equation into standard form.

multivar_09_08

multivar_09_08_smaller_file

We complete the square to obtain the coordinates of the center, and the radius, of a sphere in standard form.

multivar_09_09

multivar_09_09_smaller_file

We find the points of our sphere which lie directly above and below the point (2, 6, 2).

multivar_09_10

multivar_09_11

multivar_09_10_smaller_file

multivar_09_11_smaller_file

We find and sketch the intersection of our sphere with the x-y plane.

multivar_09_12

multivar_09_12_smaller_file

Given three points P, Q and R, we ask whether the vectors PQ, PR and QR lie in the same plane, whether the triangle PQR is a right triangle, and what are the angles between pairs of the three vectors.

multivar_09_13

multivar_09_14

multivar_09_15

multivar_09_16

multivar_09_17

multivar_09_13_smaller_file

multivar_09_14_smaller_file

multivar_09_15_smaller_file

multivar_09_16_smaller_file

multivar_09_17_smaller_file

We consider the vector PQ X PR.

multivar_09_18

multivar_09_19

multivar_09_20

multivar_09_18_smaller_file

multivar_09_19_smaller_file

multivar_09_20_smaller_file

We find the components of a vector F in the direction, and perpendicular to the direction, of another vector `ds.  This illustrates the process of scalar and vector projection and two important uses of the projection.

multivar_09_21

multivar_09_22

multivar_09_23

multivar_09_21_smaller_file

multivar_09_22_smaller_file

multivar_09_23_smaller_file

We apply the cross product to find the area of a parallelogram.

multivar_09_24

multivar_09_25

multivar_09_24_smaller_file

multivar_09_25_smaller_file

We now find the volume of a three-dimensional figure whose base is the parallelogram in the previous clip, sides parallel to vector u:

multivar_09_26

multivar_09_26_smaller_file

We now find the volume of a three-dimensional figure whose base is the parallelogram in the previous clip, sides parallel to vector u:

multivar_09_26

multivar_09_26_smaller_file

We develop the equation of a line through the point (x0, y0, z0) and perpendicular to N = a i + b j + c k.  We use the process to find specific points through specific planes, and verify important properties of the equation of the plane (e.g., finding a point on a given plane, finding the normal vector given the equation of the plane, consistency among different forms and representations of the plane).

multivar_09_27

multivar_09_27_smaller_file

multivar_09_28

multivar_09_28_smaller_file

multivar_09_29

multivar_09_29_smaller_file

multivar_09_30

multivar_09_30_smaller_file

multivar_09_31

multivar_09_31_smaller_file

We find the distance of a point from a plane.

multivar_09_32

multivar_09_32_smaller_file

multivar_09_33

multivar_09_33_smaller_file

multivar_09_34

multivar_09_34_smaller_file

We find the equation of a line through a given point, parallel to a given vector.

multivar_09_35

multivar_09_35_smaller_file

multivar_09_36

multivar_09_36_smaller_file

multivar_09_37

multivar_09_37_smaller_file

We find the distance between two lines.

multivar_09_38

multivar_09_38_smaller_file

multivar_09_39

multivar_09_39_smaller_file

multivar_09_40

multivar_09_40_smaller_file

multivar_09_41

multivar_09_41_smaller_file

We find the angle between two planes.

multivar_09_42

multivar_09_42_smaller_file

We consider the general nature of the conic sections formed by the intersections of the quadric surface, given by the equation A x^2 + B y^2 + C z^2 = D, with the coordinate planes.

multivar_09_43

multivar_09_43_smaller_file

We consider the intersection of a specific quadric surface with the xy plane and with another plane parallel to this plane, sketching the resulting conic sections in two dimensions, then within a 3-dimensional coordinate system.  We also consider the effect of c on the intersection of the surface with the plane z = c.

multivar_09_44

multivar_09_44_smaller_file

multivar_09_45

multivar_09_45_smaller_file

multivar_09_46

multivar_09_46_smaller_file

We consider the intersection of the same surface with the y-z plane, and see how the resulting conic section articulates with the sketches of the preceding example.

multivar_09_47

multivar_09_47_smaller_file

multivar_09_48

multivar_09_48_smaller_file

We briefly consider the nature and location of the more general quadric surface given by the equation A x^2 +B x + C y^2 + D y + E z^2 + F z + G = 0.

multivar_09_49

multivar_09_49_smaller_file

We consider the intersection of two quadric surfaces.

multivar_09_50

multivar_09_50_smaller_file

multivar_09_51

multivar_09_51_smaller_file

 

The remaining links are not currently occupied.  Additional video clips relevant to Chapter 9 may be added in response to questions and/or perceived difficulties.

multivar_09_52

multivar_09_52_smaller_file

multivar_09_53

multivar_09_53_smaller_file

multivar_09_54

multivar_09_54_smaller_file

multivar_09_55

multivar_09_55_smaller_file

multivar_09_56

multivar_09_56_smaller_file

multivar_09_57

multivar_09_57_smaller_file

multivar_09_58

multivar_09_58_smaller_file

multivar_09_59

multivar_09_59_smaller_file

multivar_09_60

multivar_09_60_smaller_file

multivar_09_61

multivar_09_61_smaller_file

multivar_09_62

multivar_09_62_smaller_file

multivar_09_63

multivar_09_63_smaller_file

multivar_09_64

multivar_09_64_smaller_file

multivar_09_65

multivar_09_65_smaller_file

multivar_09_66

multivar_09_66_smaller_file

multivar_09_67

multivar_09_67_smaller_file

multivar_09_68

multivar_09_68_smaller_file

multivar_09_69

multivar_09_69_smaller_file

multivar_09_70

multivar_09_70_smaller_file

multivar_09_71

multivar_09_71_smaller_file

multivar_09_72

multivar_09_72_smaller_file

multivar_09_73

multivar_09_73_smaller_file

multivar_09_74

multivar_09_74_smaller_file

multivar_09_75

multivar_09_75_smaller_file

multivar_09_76

multivar_09_76_smaller_file

multivar_09_77

multivar_09_77_smaller_file

multivar_09_78

multivar_09_78_smaller_file

multivar_09_79

multivar_09_79_smaller_file

multivar_09_80

multivar_09_80_smaller_file

multivar_09_81

multivar_09_81_smaller_file

multivar_09_82

multivar_09_82_smaller_file

multivar_09_83

multivar_09_83_smaller_file

multivar_09_84

multivar_09_84_smaller_file

multivar_09_85

multivar_09_85_smaller_file

multivar_09_86

multivar_09_86_smaller_file

multivar_09_87

multivar_09_87_smaller_file

multivar_09_88

multivar_09_88_smaller_file

multivar_09_89

multivar_09_89_smaller_file

multivar_09_90

multivar_09_90_smaller_file

multivar_09_91

multivar_09_91_smaller_file

multivar_09_92

multivar_09_92_smaller_file

multivar_09_93

multivar_09_93_smaller_file

multivar_09_94

multivar_09_94_smaller_file

multivar_09_95

multivar_09_95_smaller_file

multivar_09_96

multivar_09_96_smaller_file

multivar_09_97

multivar_09_97_smaller_file

multivar_09_98

multivar_09_98_smaller_file

multivar_09_99

multivar_09_99_smaller_file