Given points P and Q in the plane, we find the vector
PQ, its magnitude, a unit vector in the direction of PQ and a vector
of magnitude 10 in the direction of PQ.
multivar_09_01
multivar_09_02
multivar_09_03
multivar_09_01_smaller_file
multivar_09_02_smaller_file
multivar_09_03_smaller_file
We use a rectangular prism to see why the Pythagorean
Theorem extends as it does from 2 dimensions to three.
multivar_09_04
multivar_09_05
multivar_09_04_smaller_file
multivar_09_05_smaller_file
We apply the Pythagorean Theorem to the points (2, 5, -4)
and (x, y, z), and end up with the equation of a sphere centered at (2, 5, -4).
multivar_09_06
multivar_09_06_smaller_file
We apply the Pythagorean Theorem to obtain the equation of
a sphere centered at (x0, y0, z0) having radius r.
multivar_09_07
multivar_09_07_smaller_file
We apply the preceding to obtain the equation of a sphere
through (2, 5, -4) with radius 6, and expand the equation into standard form.
multivar_09_08
multivar_09_08_smaller_file
We complete the square to obtain the coordinates of the
center, and the radius, of a sphere in standard form.
multivar_09_09
multivar_09_09_smaller_file
We find the points of our sphere which lie directly above
and below the point (2, 6, 2).
multivar_09_10
multivar_09_11
multivar_09_10_smaller_file
multivar_09_11_smaller_file
We find and sketch the intersection of our sphere with the
x-y plane.
multivar_09_12
multivar_09_12_smaller_file
Given three points P, Q and R, we ask whether the vectors
PQ, PR and QR lie in the same plane, whether the triangle PQR is a
right triangle, and what are the angles between pairs of the three vectors.
multivar_09_13
multivar_09_14
multivar_09_15
multivar_09_16
multivar_09_17
multivar_09_13_smaller_file
multivar_09_14_smaller_file
multivar_09_15_smaller_file
multivar_09_16_smaller_file
multivar_09_17_smaller_file
We consider the vector PQ X PR.
multivar_09_18
multivar_09_19
multivar_09_20
multivar_09_18_smaller_file
multivar_09_19_smaller_file
multivar_09_20_smaller_file
We find the components of a vector F in the
direction, and perpendicular to the direction, of another vector `ds.
This illustrates the process of scalar and vector projection and two important
uses of the projection.
multivar_09_21
multivar_09_22
multivar_09_23
multivar_09_21_smaller_file
multivar_09_22_smaller_file
multivar_09_23_smaller_file
We apply the cross product to find the area of a
parallelogram.
multivar_09_24
multivar_09_25
multivar_09_24_smaller_file
multivar_09_25_smaller_file
We now find the volume of a three-dimensional figure whose
base is the parallelogram in the previous clip, sides parallel to vector u:
multivar_09_26
multivar_09_26_smaller_file
We now find the volume of a three-dimensional figure whose
base is the parallelogram in the previous clip, sides parallel to vector u:
multivar_09_26
multivar_09_26_smaller_file
We develop the equation of a line through the point (x0,
y0, z0) and perpendicular to N = a i + b j + c k.
We use the process to find specific points through specific planes, and verify
important properties of the equation of the plane (e.g., finding a point on a
given plane, finding the normal vector given the equation of the plane,
consistency among different forms and representations of the plane).
multivar_09_27
multivar_09_27_smaller_file
multivar_09_28
multivar_09_28_smaller_file
multivar_09_29
multivar_09_29_smaller_file
multivar_09_30
multivar_09_30_smaller_file
multivar_09_31
multivar_09_31_smaller_file
We find the distance of a point from a plane.
multivar_09_32
multivar_09_32_smaller_file
multivar_09_33
multivar_09_33_smaller_file
multivar_09_34
multivar_09_34_smaller_file
We find the equation of a line through a given point, parallel to a given
vector.
multivar_09_35
multivar_09_35_smaller_file
multivar_09_36
multivar_09_36_smaller_file
multivar_09_37
multivar_09_37_smaller_file
We find the distance between two lines.
multivar_09_38
multivar_09_38_smaller_file
multivar_09_39
multivar_09_39_smaller_file
multivar_09_40
multivar_09_40_smaller_file
multivar_09_41
multivar_09_41_smaller_file
We find the angle between two planes.
multivar_09_42
multivar_09_42_smaller_file
We consider the general nature of the conic sections formed by the
intersections of the quadric surface, given by the equation A x^2 + B y^2 + C
z^2 = D, with the coordinate planes.
multivar_09_43
multivar_09_43_smaller_file
We consider the intersection of a specific quadric surface with the xy plane
and with another plane parallel to this plane, sketching the resulting conic
sections in two dimensions, then within a 3-dimensional coordinate system.
We also consider the effect of c on the intersection of the surface with the
plane z = c.
multivar_09_44
multivar_09_44_smaller_file
multivar_09_45
multivar_09_45_smaller_file
multivar_09_46
multivar_09_46_smaller_file
We consider the intersection of the same surface with the y-z plane, and see
how the resulting conic section articulates with the sketches of the preceding
example.
multivar_09_47
multivar_09_47_smaller_file
multivar_09_48
multivar_09_48_smaller_file
We briefly consider the nature and location of the more general quadric
surface given by the equation A x^2 +B x + C y^2 + D y + E z^2 + F z + G = 0.
multivar_09_49
multivar_09_49_smaller_file
We consider the intersection of two quadric surfaces.
multivar_09_50
multivar_09_50_smaller_file
multivar_09_51
multivar_09_51_smaller_file
The remaining links are not currently occupied.
Additional video clips relevant to Chapter 9 may be added in response to
questions and/or perceived difficulties.
multivar_09_52
multivar_09_52_smaller_file
multivar_09_53
multivar_09_53_smaller_file
multivar_09_54
multivar_09_54_smaller_file
multivar_09_55
multivar_09_55_smaller_file
multivar_09_56
multivar_09_56_smaller_file
multivar_09_57
multivar_09_57_smaller_file
multivar_09_58
multivar_09_58_smaller_file
multivar_09_59
multivar_09_59_smaller_file
multivar_09_60
multivar_09_60_smaller_file
multivar_09_61
multivar_09_61_smaller_file
multivar_09_62
multivar_09_62_smaller_file
multivar_09_63
multivar_09_63_smaller_file
multivar_09_64
multivar_09_64_smaller_file
multivar_09_65
multivar_09_65_smaller_file
multivar_09_66
multivar_09_66_smaller_file
multivar_09_67
multivar_09_67_smaller_file
multivar_09_68
multivar_09_68_smaller_file
multivar_09_69
multivar_09_69_smaller_file
multivar_09_70
multivar_09_70_smaller_file
multivar_09_71
multivar_09_71_smaller_file
multivar_09_72
multivar_09_72_smaller_file
multivar_09_73
multivar_09_73_smaller_file
multivar_09_74
multivar_09_74_smaller_file
multivar_09_75
multivar_09_75_smaller_file
multivar_09_76
multivar_09_76_smaller_file
multivar_09_77
multivar_09_77_smaller_file
multivar_09_78
multivar_09_78_smaller_file
multivar_09_79
multivar_09_79_smaller_file
multivar_09_80
multivar_09_80_smaller_file
multivar_09_81
multivar_09_81_smaller_file
multivar_09_82
multivar_09_82_smaller_file
multivar_09_83
multivar_09_83_smaller_file
multivar_09_84
multivar_09_84_smaller_file
multivar_09_85
multivar_09_85_smaller_file
multivar_09_86
multivar_09_86_smaller_file
multivar_09_87
multivar_09_87_smaller_file
multivar_09_88
multivar_09_88_smaller_file
multivar_09_89
multivar_09_89_smaller_file
multivar_09_90
multivar_09_90_smaller_file
multivar_09_91
multivar_09_91_smaller_file
multivar_09_92
multivar_09_92_smaller_file
multivar_09_93
multivar_09_93_smaller_file
multivar_09_94
multivar_09_94_smaller_file
multivar_09_95
multivar_09_95_smaller_file
multivar_09_96
multivar_09_96_smaller_file
multivar_09_97
multivar_09_97_smaller_file
multivar_09_98
multivar_09_98_smaller_file
multivar_09_99
multivar_09_99_smaller_file