When submitting your work electronically, show the details of your work and give a good verbal description of your graphs.

One very important goal of the course is to learn to communicate mathematical thinking and logical reasoning.  If you can effectively communicate mathematics, you will be able to effectively communicate a wide range of important ideas, which is extremely valuable in your further education and in your career.

When writing out solutions, self-document.   That is, write your solution so it can be read without reference by the reader to the problem statement.  Use specific and descriptive   statements like the following:

 

Here are some data for the temperature of a hot potato vs. time:

Time (minutes)

Temperature (Celsius)

0

108

17

108

34

87.90224

51

79.75957

68

72.67098

85

66.5

102

61.12785

119

56.45112

Graph these data below, using an appropriate scale:

Pick three representative points and circle them.

Write the equations that result from the assumption that the appropriate mathematical model is a quadratic function y = a t^2 + b t + c.

Eliminate c from your equations to obtain two equations in a and b.

Solve for a and b.

Write the resulting model for temperature vs. time.

Make a table for this function:

Time (minutes)

Model Function's Prediction of Temperature

0

 

17

 

34

 

51

 

68

 

85

 

102

 

119

 

Sketch a smooth curve representing this function on your graph.

Expand your table to include the original temperatures and the deviations of the model function for each time:

Time (minutes)

Temperature (Celsius)

Prediction of Model Deviation of Observed Temperature from Model

0

108

   

17

97.2557

   

34

87.90224

   

51

79.75957

   

68

72.67098

   

85

66.5

   

102

61.12785

   

119

56.45112

   

Find the average of the deviations.

 

1.  If you have not already done so, obtain your own set of flow depth vs. time data as instructed in the Flow Experiment (either perform the experiment, as recommended, or E-mail the instructor for a set of data). 

Complete the modeling process for your own flow depth vs. time data.

Use your model to predict depth when clock time is 46 seconds, and the clock time when the water depth first reaches 14 centimeters.

Comment on whether the model fits the data well or not.

2.  Follow the complete modeling procedure for the two data sets below, using a quadratic model for each.  Note that your results might not be as good as with the flow model.  It is even possible that at least one of these data sets cannot be fit by a quadratic model.

Data Set 1

In a study of precalculus students, average grades were compared with the percent of classes in which the students took and reviewed class notes. The results were as follows:

Percent of Assignments Reviewed

Grade Average

0

1.014738

10

1.408518

20

1.756831

30

2.064929

40

2.337454

50

2.578513

60

2.79174

70

2.980347

80

3.147178

90

3.294747

100

3.425278

Determine from your model the percent of classes reviewed to achieve grades of 3.0 and 4.0.

Determine also the projected grade for someone who reviews notes for 80% of the classes.

Comment on how well the model fits the data.  The model may fit or it may not.

Comment on whether or not the actual curve would look like the one you obtained, for a real class of real students.

Data Set 2

The following data represent the illumination of a comet by a certain star, reasonably similar to our Sun, at various distances from the star:    

Distance from Star (AU)

Illumination of Comet (W/m^2)

1

1470

2

367.5

3

163.3333

4

91.875

5

58.8

6

40.83333

7

30

8

22.96875

9

18.14815

10

14.7

Obtain a model.

Determine from your model what illumination would be expected at 1.6 AU from the star.

At what range of distances from the star would the illumination be comfortable for reading, if reading comfort occurs in the range from 25 to 100 Watts per square meter?

Analyze how well your model fits the data and give your conclusion.  The model might fit, and it might not.  You determine whether it does or doesn't.